117 research outputs found

    Semi-Streaming Algorithms for Annotated Graph Streams

    Get PDF
    Considerable effort has been devoted to the development of streaming algorithms for analyzing massive graphs. Unfortunately, many results have been negative, establishing that a wide variety of problems require Ω(n2)\Omega(n^2) space to solve. One of the few bright spots has been the development of semi-streaming algorithms for a handful of graph problems -- these algorithms use space O(npolylog(n))O(n\cdot\text{polylog}(n)). In the annotated data streaming model of Chakrabarti et al., a computationally limited client wants to compute some property of a massive input, but lacks the resources to store even a small fraction of the input, and hence cannot perform the desired computation locally. The client therefore accesses a powerful but untrusted service provider, who not only performs the requested computation, but also proves that the answer is correct. We put forth the notion of semi-streaming algorithms for annotated graph streams (semi-streaming annotation schemes for short). These are protocols in which both the client's space usage and the length of the proof are O(npolylog(n))O(n \cdot \text{polylog}(n)). We give evidence that semi-streaming annotation schemes represent a substantially more robust solution concept than does the standard semi-streaming model. On the positive side, we give semi-streaming annotation schemes for two dynamic graph problems that are intractable in the standard model: (exactly) counting triangles, and (exactly) computing maximum matchings. The former scheme answers a question of Cormode. On the negative side, we identify for the first time two natural graph problems (connectivity and bipartiteness in a certain edge update model) that can be solved in the standard semi-streaming model, but cannot be solved by annotation schemes of "sub-semi-streaming" cost. That is, these problems are just as hard in the annotations model as they are in the standard model.Comment: This update includes some additional discussion of the results proven. The result on counting triangles was previously included in an ECCC technical report by Chakrabarti et al. available at http://eccc.hpi-web.de/report/2013/180/. That report has been superseded by this manuscript, and the CCC 2015 paper "Verifiable Stream Computation and Arthur-Merlin Communication" by Chakrabarti et a

    A Nearly Optimal Lower Bound on the Approximate Degree of AC0^0

    Full text link
    The approximate degree of a Boolean function f ⁣:{1,1}n{1,1}f \colon \{-1, 1\}^n \rightarrow \{-1, 1\} is the least degree of a real polynomial that approximates ff pointwise to error at most 1/31/3. We introduce a generic method for increasing the approximate degree of a given function, while preserving its computability by constant-depth circuits. Specifically, we show how to transform any Boolean function ff with approximate degree dd into a function FF on O(npolylog(n))O(n \cdot \operatorname{polylog}(n)) variables with approximate degree at least D=Ω(n1/3d2/3)D = \Omega(n^{1/3} \cdot d^{2/3}). In particular, if d=n1Ω(1)d= n^{1-\Omega(1)}, then DD is polynomially larger than dd. Moreover, if ff is computed by a polynomial-size Boolean circuit of constant depth, then so is FF. By recursively applying our transformation, for any constant δ>0\delta > 0 we exhibit an AC0^0 function of approximate degree Ω(n1δ)\Omega(n^{1-\delta}). This improves over the best previous lower bound of Ω(n2/3)\Omega(n^{2/3}) due to Aaronson and Shi (J. ACM 2004), and nearly matches the trivial upper bound of nn that holds for any function. Our lower bounds also apply to (quasipolynomial-size) DNFs of polylogarithmic width. We describe several applications of these results. We give: * For any constant δ>0\delta > 0, an Ω(n1δ)\Omega(n^{1-\delta}) lower bound on the quantum communication complexity of a function in AC0^0. * A Boolean function ff with approximate degree at least C(f)2o(1)C(f)^{2-o(1)}, where C(f)C(f) is the certificate complexity of ff. This separation is optimal up to the o(1)o(1) term in the exponent. * Improved secret sharing schemes with reconstruction procedures in AC0^0.Comment: 40 pages, 1 figur

    Lower Bounds for the Approximate Degree of Block-Composed Functions

    Get PDF
    We describe a new hardness amplification result for point-wise approximation of Boolean functions by low-degree polynomials. Specifically, for any function f on N bits, define F(x_1,...,x_M) = OMB(f(x_1),...,f(x_M)) to be the function on M*N bits obtained by block-composing f with a function known as ODD-MAX-BIT. We show that, if f requires large degree to approximate to error 2/3 in a certain one-sided sense (captured by a complexity measure known as positive one-sided approximate degree), then F requires large degree to approximate even to error 1-2^{-M}. This generalizes a result of Beigel (Computational Complexity, 1994), who proved an identical result for the special case f=OR. Unlike related prior work, our result implies strong approximate degree lower bounds even for many functions F that have low threshold degree. Our proof is constructive: we exhibit a solution to the dual of an appropriate linear program capturing the approximate degree of any function. We describe several applications, including improved separations between the complexity classes P^{NP} and PP in both the query and communication complexity settings. Our separations improve on work of Beigel (1994) and Buhrman, Vereshchagin, and de Wolf (CCC, 2007)

    Parallel Peeling Algorithms

    Full text link
    The analysis of several algorithms and data structures can be framed as a peeling process on a random hypergraph: vertices with degree less than k are removed until there are no vertices of degree less than k left. The remaining hypergraph is known as the k-core. In this paper, we analyze parallel peeling processes, where in each round, all vertices of degree less than k are removed. It is known that, below a specific edge density threshold, the k-core is empty with high probability. We show that, with high probability, below this threshold, only (log log n)/log(k-1)(r-1) + O(1) rounds of peeling are needed to obtain the empty k-core for r-uniform hypergraphs. Interestingly, we show that above this threshold, Omega(log n) rounds of peeling are required to find the non-empty k-core. Since most algorithms and data structures aim to peel to an empty k-core, this asymmetry appears fortunate. We verify the theoretical results both with simulation and with a parallel implementation using graphics processing units (GPUs). Our implementation provides insights into how to structure parallel peeling algorithms for efficiency in practice.Comment: Appears in SPAA 2014. Minor typo corrections relative to previous versio
    corecore